Архивы рубрики ‘Проектирование’
Какое сечение кабеля выбрать для квартирной электропроводки?
Задача
На групповую электрическую сеть квартиры в этажном щитке многоэтажного жилого дома установлены модульные автоматические выключатели с номинальным током 16 А (розетки + освещение) и 25 А (электроплита); характеристика срабатывания этих выключателей — "С".
Прежде, чем прочитать решение, проголосуйте, пожалуйста, в опросе выше.
Особенности расчёта потери напряжения в магистральной линии
1. Введение
Расчёт суммарной потери напряжения до удалённых потребителей с целью проверки у них отклонения напряжения и сравнения с нормативным является одним из базовых при проектировании систем электроснабжения. Как показывает практика, в различных проектных институтах, и даже у проектировщиков в рамках одного института, эти расчёты выполняются по-разному. В этой статье рассмотрены типичные ошибки проектировщиков на примере расчёта потери напряжения в магистральной линии, питающей летние домики на участках садовых товариществ.
Компенсация реактивной мощности: расчет мощности и выбор ступени регулирования конденсаторной батареи
Введение
Мощность, потребляемая нагрузкой на переменном токе, подразделяется на активную (P) и реактивную (Q) составляющую. Полезную работу совершает только активная мощность, а реактивная мощность идет на создание магнитного и электрического поля. Передача реактивной мощности от источников генерации к потребителю нежелательна по следующим причинам:
- появляются дополнительные потери активной мощности и энергии во всех элементах электрической сети;
- возрастают потери напряжения;
- увеличиваются капитальные затраты на строительство сетей, так как приходится ставить более мощное оборудование на подстанциях и прокладывать линии с большим сечением жил проводов и кабелей.
Существует ряд мероприятий по снижению потребления реактивной мощности, в частности, установка компенсирующих устройств (КУ). Очевидно, что наиболее целесообразно ставить КУ в местах потребления реактивной мощности, так как в этом случае разгружается все элементы сети, участвующие в передаче электроэнергии. Для компенсации реактивной мощности используются конденсаторные батареи, синхронные компенсаторы, тиристорные компенсаторы.
Учет температуры при расчете активного сопротивления
Согласно ГОСТ 28249-93 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.» [1], п.1.5.:
1.5. При расчетах токов КЗ рекомендуется учитывать:
…
2) изменение активного сопротивления проводников короткозамкнутой цепи вследствие их нагрева при КЗ;
…
При этом в приложении 2 приводится следующая формула для расчета изменения удельного сопротивления при повышении температуры:
где
ρΘ и ρΘнорм — удельные сопротивления, Ом×м, материала кабеля при температуре Θ и начальной нормированной температуре Θнорм (Θ0).
К сожалению, в ГОСТ отсутствует расшифровка для символа Т, используемого в формуле (2).
Выбор дизельной электростанции: пусковые токи
При выборе дизельной электростанции (ДЭС) в качестве автономного (основного или резервного) источника электроэнергии проектировщика подстерегают несколько подводных камней. Одним из таких «камней» является обеспечение пусковых токов нагрузки потребителя. Неопытный специалист при выборе ДЭС руководствуется, как правило, только расчетной мощностью нагрузки, забывая, что это максимальная усредненная нагрузка на временном интервале 30 мин (интервал указан как характерный для сети напряжением до 1000 В).
Расчет сопротивления нулевой последовательности линии
Величина сопротивления нулевой последовательности используется в расчетах однофазного короткого замыкания методом симметричных составляющих. Но, зачастую проблематично найти значение этой величины в справочниках для различного исполнения электрических сетей, и, следовательно, невозможно выполнить расчет. При этом значения сопротивлений фазного и нулевого проводников в справочниках присутствуют. Как же быть?
Можно использовать следующие формулы расчета сопротивления нулевой последовательности:
где R0л (X0л) – активное (индуктивное) сопротивление нулевой последовательности линии;
Rф (Xф) – активное (индуктивное) сопротивление фазного проводника;
Rн (Xн) – активное (индуктивное) сопротивление нулевого проводника.
Вывод формул смотри ниже.
Расчет сопротивления заземляющего устройства: часть 3
Содержание
Часть 3
Расчет заземляющего устройства по справочнику Р.Н.Карякина, 2006 г.
Заземляющее устройство в однослойном грунте.
В справочнике Р. Н. Карякина [3] отдельный акцент ставится на определении сопротивления грунта:
«Электропроводность породы, если она не содержит высоких концентраций проводящих минералов, при обычных температурах определяется количеством присутствующей в ней воды, минерализацией воды и характером распределения воды в породе… Удельное электрическое сопротивление породы зависит также от температуры. Для водосодержащих пород влияние температуры на сопротивление породы такое же, как и влияние температуры на электросопротивление находящейся в породе воды в интервале температур между точками ее замерзания и кипения».
Согласно формуле (3.2) справочника, изменения сопротивления, вызванные температурными изменениями в растворе электролита, приближенно выражаются формулой
где ρT, ρ20 – сопротивления при T° и 20° С, соответственно.
Расчет сопротивления заземляющего устройства: часть 2
Содержание
Часть 2
Расчет заземляющего устройства по справочнику под общей редакцией А. А. Федорова и Г. В. Сербиновского, 1980 г.
Заземляющее устройство в однослойном грунте.
В этом справочнике [2] расчет заземляющего устройства основан на тех же принципах и допущениях, что и в справочнике под ред. Ю.Г. Барыбина [1], но есть несколько отличий, на которых следует остановиться.
Первое отличие заключается в том, что расчет производится не сопротивления Rз по заданной конфигурации ЗУ, наоборот, по заданному сопротивлению растекания Rз определяется количество вертикальных электродов, а, следовательно, и конфигурация всего заземляющего устройства. Если эти же формулы использовать для нахождения Rз, выразив соответствующие величины, то порядок и вид расчетов ничем не будет отличаться от методики, предложенной в справочнике Ю. Г. Барыбина [1]. Поэтому, для корректного сравнения методик, выполним все расчеты в том же порядке, что и предыдущие.
Второе отличие заключается в несовпадении табличных данных для различных климатических зон. Следует заметить, что даже малейшее изменение этого коэффициента серьезно влияет на результат расчета. В [2] значения коэффициентов указаны более высокие, чем в [1], следовательно, при одной и той же конфигурации заземляющего устройства сопротивление растекания будет выше при расчете по справочнику [2].
Третье отличие заключается в написании формул для расчета сопротивления растекания одиночных электродов.
Расчет сопротивления заземляющего устройства: часть 1
Содержание
Часть 1
Введение
В настоящее время в сети Интернет можно найти множество статей, рекомендаций и программ по расчету сопротивления заземляющих устройств (ЗУ). Одна из проблем состоит в том, что нередко авторы не приводят ссылку на источник методики расчета. Приходится гадать, насколько автор ответственно подошел к написанию статьи или программы, и не исказил ли формулы в сравнении с первоисточником, исходя из своих соображений «правильности» расчетов. Второй проблемой можно назвать некоторую дезориентацию специалистов в применении той или иной методики, применяемой для расчетов заземляющего устройства. Цель этой статьи – внести некоторую ясность в вопрос расчетов заземляющего устройства. Для этого, проведем расчеты сопротивления ЗУ по разным методикам и сравним результаты, попутно выясняя сильные и слабые стороны методик.
Вот источники, по рекомендациям которых проводились расчеты, приведенные в статье:
- Справочник по проектированию электрических сетей и электрооборудования / Под ред. Ю. Г. Барыбина и др. – М: Энергоатомиздат, 1991 г. – 464 с [1].
- Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети. 2-е изд., перераб. и доп. / Под общ. ред. А. А. Федорова и Г. В. Сербиновского. – М.: Энергия, 1980. – 576 с, ил [2].
- Карякин Р. Н. Заземляющие устройства электроустановок. Справочник. 2-е издание. М.: Энергосервис, 2006 [3].
- Карякин Р. Н. Нормы устройства сетей заземления. Москва, Энергосервис, 2002 г [4].
Эти источники выбраны на том основании, что подавляющее количество статей, рекомендаций и программ в Интернет используют те же самые (или похожие) формулы. Материал из [4] используется в качестве проверочного и вспомогательного к материалу, изложенному в [3].
Разумеется, нельзя объять необъятное, и автор этой статьи не ставит задачи о полном сравнении методик. Разберем частный и наиболее встречающийся случай расчета сопротивления комбинированного заземляющего устройства в однослойном и двухслойном грунте.
Минимальный ток короткого замыкания в случае параллельного соединения линий
В сетях напряжением 400/230 В для проверки чувствительности аппаратов защиты необходимо выполнять расчет величины минимального тока короткого замыкания (КЗ). Как правило, специалистом выполняется расчет тока однофазного короткого замыкания (ОКЗ) в наиболее удаленной точке линии, то есть в конце. Действительно, если в линии отсутствуют проводники, включенные параллельно (то есть под один зажим), то максимальное сопротивление линии току ОКЗ наблюдается в том случае, если точка ОКЗ находится в конце линии (см. формулу 1).
\(\underline Z_л=\underline Z_{пог}\cdot L\) (1)
где \(Z_л\) – полное сопротивление линии, Ом;
\(Z_{пог}\) – погонное полное сопротивление линии, Ом/км;
\(L\) – длина линии, км.
\(\underline Z_{пог}=R_{пог}+j\cdot X_{пог}\) (2)
где \(R_{пог}\) – погонное активное сопротивление линии, Ом/км;
\(X_{пог}\) – погонное индуктивное сопротивление линии, Ом/км.
При этом, в погонном сопротивлении линии уже учтены сопротивления фазного (ф) и нулевого (н) проводников, то есть
\(R_{пог}=R_{пог.ф}+R_{пог.н}\) (3)
\(X_{пог}=X_{пог.ф}+X_{пог.н}\) (4)