Компенсация реактивной мощности: расчет мощности и выбор ступени регулирования конденсаторной батареи

Введение

Мощность, потребляемая нагрузкой на переменном токе, подразделяется на активную (P) и реактивную (Q) составляющую. Полезную работу совершает только активная мощность, а реактивная мощность идет на создание магнитного и электрического поля. Передача реактивной мощности от источников генерации к потребителю нежелательна по следующим причинам:

  • появляются дополнительные потери активной мощности и энергии во всех элементах электрической сети;
  • возрастают потери напряжения;
  • увеличиваются капитальные затраты на строительство сетей, так как приходится ставить более мощное оборудование на подстанциях и прокладывать линии с большим сечением жил проводов и кабелей.

Существует ряд мероприятий по снижению потребления реактивной мощности, в частности, установка компенсирующих устройств (КУ). Очевидно, что наиболее целесообразно ставить КУ в местах потребления реактивной мощности, так как в этом случае разгружается все элементы сети, участвующие в передаче электроэнергии. Для компенсации реактивной мощности используются конденсаторные батареи, синхронные компенсаторы, тиристорные компенсаторы.

Соотношение потребления активной и реактивной мощности характеризуется коэффициентом реактивной мощности – tgϕ.

Коэффициент реактивной мощности

(1)

 

 Предельные значения tgϕ в часы больших суточных нагрузок электрической сети для потребителей, присоединенных к сетям напряжением ниже 220 кВ, определяются в соответствии с приложением к [1] (см. табл. 1).

Таблица 1.

Предельные значения коэффициента реактивной мощности

Положение точки присоединения потребителя к электрической сети

tgϕ

- напряжением 110 кВ (154 кВ)

0,5

- напряжением 35 кВ (60 кВ)

0,4

- напряжением 6-20 кВ

0,4

- напряжением 0,4 кВ

0,35

Следует заметить, что эти значения устанавливаются

«…в отношении потребителей электрической энергии, присоединенная мощность энергопринимающих устройств которых более 150 кВт (за исключением граждан-потребителей, использующих электрическую энергию для бытового потребления, и приравненных к ним в соответствии с нормативными правовыми актами в области государственного регулирования тарифов групп (категорий) потребителей (покупателей), в том числе многоквартирных домов, садоводческих, огороднических, дачных и прочих некоммерческих объединений граждан)» [1].

Кроме того, максимальная величина tgϕ может указываться в выдаваемых потребителям технических условиях (ТУ) на подключение к электрическим сетям. В этом случае примерная формулировка следующая (пример для ТП-10/0,4 кВ):

«Согласованный системным оператором tgϕ на стороне 10 кВ принять не более 0,1. Проектом необходимо выполнить расчёт реактивной мощности, предусмотреть компенсирующие устройства с автоматическим регулированием в РУ-0,4 кВ трансформаторной подстанции. Количество и мощность компенсирующих устройств определить проектом».

В приведенной формулировке требования к максимальному значению tgϕ жёстче, чем в [1] (см. табл. 1). При этом не указывается, к какому режиму относится требование – часы больших или малых суточных нагрузок.

В статье рассматривается распространенный случай компенсации реактивной мощности в системе электроснабжения при установке регулируемой батареи конденсаторов на шинах 0,4 кВ трансформаторной подстанции (ТП) напряжением 10(6)/0,4 кВ.

Постановка задачи

Принципиальная электрическая схема трансформаторной подстанции с установленными устройствами компенсации реактивной мощности (конденсаторными батареями) приведена на рис. 1.

 

Принципиальная электрическая схема трансформаторной подстанции

Рис. 1. Принципиальная электрическая схема трансформаторной подстанции.

Как правило, секционный автоматический выключатель в нормальном режиме работы ТП разомкнут. Каждую секцию шин можно рассматривать изолировано друг от друга и рассчитывать параметры режима отдельно. Для упрощения расчетов будем считать режимы потребления электроэнергии на обеих секциях симметричными и примем следующие обозначения:

  • Pр.нагр.1 = Pр.нагр.2 = Pр.нагр. – расчётная активная мощность нагрузки;
  • cosϕр.нагр.1 = cosϕр.нагр.2 = cosϕр.нагр. – расчётный коэффициент мощности нагрузки;
  • QКУ-1.ном = QКУ-2.ном = QКУ.ном – номинальная мощность устройства компенсации реактивной мощности (УКРМ);
  • ΔQКУ-1 = ΔQКУ-2 = ΔQКУ – мощность ступени регулирования УКРМ;
  • UНН – номинальное напряжение стороны низкого напряжения (НН);
  • P1НН = P2НН = PНН = Pр.нагр.– расчётная активная мощность на шинах НН;
  • Q1НН = Q2НН = QНН – расчётная реактивная мощность на шинах НН;
  • tgϕ1НН = tgϕ2НН = tgϕНН – расчётный коэффициент реактивной мощности на шинах НН;
  • ΔPТ – потери активной мощности в трансформаторе;
  • ΔQТ – потери реактивной мощности в трансформаторе;
  • UВН – номинальное напряжение стороны высокого напряжения (ВН);
  • tgϕmax (tgϕmin) – максимальное (минимальное) значение нормируемого коэффициента реактивной мощности на шинах ВН;
  • P1ВН = P2ВН = PВН – расчётная активная мощность на шинах ВН;
  • Q1ВН= Q2ВН = QВН – расчётная реактивная мощность на шинах ВН;
  • tgϕ1ВН = tgϕ2ВН = tgϕВН – расчётный коэффициент реактивной мощности на шинах ВН.

Цель: рассчитать номинальную реактивную мощность (QКУ.ном) и ступень регулирования (ΔQКУ) УКРМ.

Расчет мощности УКРМ

Коэффициент реактивной мощности на стороне ВН определяется следующим образом:

Коэффициент реактивной мощности на стороне ВН

(2)

Потребляемая активная мощность на шинах ВН складывается из активной мощности нагрузки и активных потерь мощности в трансформаторе:

Активная мощность на шинах ВН

(3)

Потребляемая реактивная мощность на шинах ВН складывается из реактивной мощности нагрузки и реактивных потерь мощности в трансформаторе за вычетом расчетной мощности компенсирующего устройства:

Реактивная мощность на шинах ВН

(4)

Выразим реактивную мощность нагрузки через известные величины (см. рис.1):

Расчётная реактивная мощность нагрузки

(5)

 
Коэффициент реактивной мощности нагрузки

(6)

Потери активной и реактивной мощности в трансформаторе зависят от передаваемой мощности и рассчитываются по формулам (7) и (8):

Потери активной мощности в трансформаторе

(7)

 
Потери реактивной мощности в трансформаторе

(8)

где ΔPxx – потери активной мощности холостого хода трансформатора (паспортные данные), кВт;

ΔQμ – потери реактивной мощности холостого хода трансформатора, квар;

ΔPнагр. (ΔQнагр.) – нагрузочные активные (реактивные) потери в трансформаторе, кВт (квар);

ΔPк – потери активной мощности короткого замыкания трансформатора (паспортные данные), кВт;

SНН – потребляемая полная мощность на шинах НН, кВ*А:

Потребляемая полная мощность на шинах НН

(9)

SТ – номинальная полная мощность трансформатора, кВ*А;

Iхх – ток холостого хода трансформатора, %;

Uк – напряжение короткого замыкания трансформатора, %.

Следует заметить, что расчеты по формулам (7) – (9) носят приближённый характер, так как на этом этапе нельзя определить значение QНН из-за того, что неизвестно расчетное значение реактивной мощности компенсирующего устройства QКУ.р, см. формулу (4). В этом случае можно:

  • принять QКУ.р = 0 и выполнить расчет без компенсирующего устройства;
  • принять QКУ.р = Qр.нагр. и выполнить расчет при полной компенсации реактивной мощности на шинах НН (этот вариант рекомендуется использовать из-за меньшей расчетной погрешности первой итерации расчёта потерь в трансформаторе).

Подставляя в (2) выражения (3), (4) и (5), получим выражение для расчета коэффициента реактивной мощности на шинах ВН, где вторым неизвестным является значение реактивной мощности компенсирующего устройства QКУ:

Коэффициент реактивной мощности на шинах ВН

(10)

Так как максимальное значение коэффициента реактивной мощности на шинах ВН нормировано, значит должно выполняться следующее условие:

Нормирование коэффициента реактивной мощности на шинах ВН

(11)

Выполнение условия (11) необходимо по нормативным требованиям, но недостаточно, так как коэффициент реактивной мощности может быть отрицательной величиной. Действительно, если в (10) QКУ.р будет достаточно большой величиной, чтобы числитель дроби стал отрицательным, то получим перекомпенсацию реактивной мощности QВН< 0 (генерацию в сеть высокого напряжения) и tgϕВН < 0. Перекомпенсация реактивной мощности также нежелательна, как и недокомпенсация, так как в сети опять появляются дополнительные потери мощности и энергии в электрической сети и возрастают капитальные затраты на её строительство. Таким образом, наряду с максимальным значением коэффициента реактивной мощности должно задаваться его минимальное значение tgϕmin. В отсутствие нормативных требований к величине tgϕmin его значение может быть определено из следующих соображений:

  • если генерация реактивной мощности в сеть ВН недопустима, то tgϕmin = 0;
  • если нельзя превышать заданный уровень потерь мощности и энергии в сети, а также обеспечить работу оборудования в номинальных режимах (перекомпенсация допустима), то tgϕmin = -tgϕmax.

Необходимое и достаточное условие для выбора УКРМ выглядит следующим образом:

Условие для выбора УКРМ

(12)

Подставив (10) в (12), получим:

Условие для выбора УКРМ

(13)

Рассмотрим отдельно левую и правую части выражения (13).

Очевидно, что tgϕmax будет при наименьшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.min. Заменим в (13) QКУ.р на QКУ.р.min и подставим знак равенства между правой и средней частью выражения:

Максимальный коэффициент реактивной мощности

(14)

Выразив в (14) QКУ.р.min и выполнив необходимые преобразования (15), получим выражение для расчета минимально допустимой мощности компенсирующего устройства (16):

Минимально допустимая мощность компенсирующего устройства

(15)

 
Минимально допустимая мощность компенсирующего устройства

(16)

Аналогично для левой части (13), tgϕmin будет при наибольшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.max. Соответственно, выражение для расчета максимально допустимой мощности КУ:

Максимально допустимая мощность компенсирующего устройства

(17)

Номинальная мощность установки компенсации реактивной мощности выбирается из условия:

Условие выбора номинальной мощности УКРМ

(18)

где QКУ.р.max и QКУ.р.min – граничные значения реактивной мощности УКРМ, определенные для расчётных значений Pр.нагр. и cosϕр.нагр..

Подставив (16) и (17) в (18), получаем окончательные выражения для выбора номинальной реактивной мощности УКРМ:

Условие выбора номинальной мощности УКРМ

(19)

 
Условие выбора номинальной мощности УКРМ

(20)

Выбрав УКРМ, проводим вторую итерацию расчетов по формулам (7) – (9), подставляя в формулы вместо QКУ.р значение QКУ.ном, и уточняем величину QКУ.ном по выражениям (19) и (20).

Выбор ступени регулирования УКРМ

Конденсаторная батарея (УКРМ) содержит ограниченный набор конденсаторов. Конденсаторы могут быть одинаковой или различной ёмкости и разбиты на группы. Каждая группа имеет свое коммутационное устройство (контактор) для включения в электрическую цепь. Микропроцессорный блок контроля и управления измеряет параметры текущего режима (ток и напряжение) и подбирает такое сочетание имеющихся групп конденсаторов, чтобы обеспечить требуемое значение коэффициента реактивной мощности. Очевидно, что регулирование реактивной мощности УКРМ является дискретным. Минимальная величина изменяемого значения реактивной мощности УКРМ называется ступенью регулирования ΔQКУ. Чем меньше ступень регулирования, тем более громоздким и дорогим получается УКРМ, так как увеличивается число конденсаторных групп и коммутационных устройств, но тем точнее поддерживается заданный коэффициент реактивной мощности.

Таким образом, при выборе УКРМ необходимо наряду с номинальной мощностью определить величину ступени регулирования. Ступень регулирования должна быть достаточно мала для поддержания коэффициента реактивной мощности в заданном диапазоне, см. (12), и в то же время без необходимости не увеличивала габариты и стоимость УКРМ.

Для наглядности нанесём значения QКУ, QКУ.min и QКУ.max на числовую ось Q для текущего (не расчетного) режима нагрузки в фиксированный момент времени (см. рис. 2, а).

Текущий режим нагрузки характеризуется значениями:

  • Pнагр.(Qнагр.) – активная (реактивная) мощность нагрузки;
  • cosϕнагр. – коэффициент мощности нагрузки;
  • QКУ – реактивная мощность, вырабатываемая КУ;
  • QКУ.min и QКУ.max – граничные значения реактивной мощности УКРМ для текущего режима нагрузки.

Изображение реактивной мощности УКРМ для текущего режима

Рис. 2. Изображение реактивной мощности УКРМ в текущем режиме.

а – до переключения ступени регулирования; б – в момент переключения ступени регулирования

Значение QКУ находится между значениями QКУ.min и QКУ.max, значит коэффициент реактивной мощности tgϕВН находится в допустимом диапазоне значений. При уменьшении реактивной мощности нагрузки Qнагр. значения QКУ.min и QКУ.max начинают уменьшаться, см. (5), (16) и (17). При этом они смещаются влево на оси Q до тех пор, пока QКУ.max не достигнет значения QКУ (см. рис. 2, б). При дальнейшем снижении Qнагр. значение QКУ выходит за допустимый диапазон. В этот момент УКРМ снижает вырабатываемую реактивную мощность QКУ на величину ступени регулирования ΔQКУ до значения Q’КУ. Очевидно, что величина ступени регулирования не должна превышать разность между значениями QКУ.max и QКУ.min. Аналогичные рассуждения можно провести при увеличении реактивной мощности нагрузки Qнагр.

Итак, расчётная величина ступени регулирования компенсирующего устройства определяется по выражению:

Расчётная величина ступени регулирования УКРМ

(21)

Подставив в (21) выражения (16) и (17), получим формулу расчёта ступени регулирования УКРМ:

Расчётная величина ступени регулирования УКРМ

(22)

Выбор ступени регулирования УКРМ ΔQКУ выполняется по выражению:

Выбор ступени регулирования УКРМ

(23)

Подставив (22) в (23), окончательно получим:

Выбор ступени регулирования УКРМ

(24)

Из (22) видно, что расчетное значение ступени регулирования зависит от величины активной мощности нагрузки Pнагр.; при снижении Pнагр. снижается и расчетное значение ΔQКУ.р. Следовательно, если ступень регулирования выбрана по расчетной мощности нагрузки Pр.нагр., то приемлемое значение tgϕВН гарантированно будет обеспечиваться только в диапазоне расчетных (максимальных) значений нагрузок потребителей. При снижении потребляемой нагрузки Pнагр. величина ΔQКУ.р может оказаться меньше ΔQКУ, и tgϕВН выйдет за границы диапазона допустимых значений tgϕmax и tgϕmin. Во избежание этой ситуации рекомендуется производить расчет ΔQКУ.р в режиме малых нагрузок. Тогда выбранная ступень регулирования ΔQКУ по выражению (24) обеспечит поддержание tgϕВН в требуемом диапазоне в режиме и больших, и малых нагрузок.

Пример расчёта

Произведем расчет номинальной мощности и ступени регулирования УКРМ для следующих условий:

параметры нагрузки:

  • Pр.нагр.= 400 кВт;
  • Pр.min.нагр.= 150 кВт (расчётная мощность в режиме малых нагрузок);
  • cosϕр.нагр. = 0,85;

заданный диапазон значений коэффициента реактивной мощности:

  • tgϕmax= 0,1;
  • tgϕmin = 0;

паспортные значения трансформатора:

  • SТ = 630 кВ*А;
  • ΔPxx =0,94 кВт;
  • ΔPк = 7,6 кВт;
  • Iхх = 1,6%;
  • Uк = 5,5 %.

Выполним последовательно расчеты по формулам (6), (5), (9), (7), (8), (16) и (17), при этом примем номинальную мощность УКРМ равной реактивной мощности нагрузки.

Коэффициент реактивной мощности нагрузки

(25)

 
Расчётная реактивная мощность нагрузки

(26)

 
Потребляемая полная мощность на шинах НН

(27)

 
Потери активной мощности в трансформаторе

(28)

 
Потери реактивной мощности в трансформаторе

(29)

 
Расчётное значение минимальной мощности УКРМ

(30)

 
Расчётное значение максимальной мощности УКРМ

(31)

Выполним подбор номинальной мощности УКРМ по выражению (18):

Подбор номинальной мощности УКРМ

(32)

Выбираем по каталогу завода-изготовителя УКРМ с номинальной мощностью 250 квар.

Подставим в формулу (27) выбранное значение номинальной мощности УКРМ вместо QКУ.р (вторая итерация расчётов):

Потребляемая полная мощность на шинах НН

(33)

Так как значение SНН практически не изменилось, то не имеет смысла производить все расчёты второй итерации. В итоге номинальное значение реактивной мощности УКРМ не изменится.

Окончательно выбираем УКРМ номинальной мощностью 250 квар.

Рассчитаем ступень регулирования УКРМ по выражению (22), предварительно определив потери активной мощности в трансформаторе в режиме минимальных нагрузок по формуле (7), приняв SНН = Pр.min.нагр., так как приближенно считаем, что всю реактивную мощность нагрузки компенсирует УКРМ:

Потери активной мощности в трансформаторе

(34)

 

Расчёт ступени регулирования УКРМ

(35)

Учитывая (23), по каталогу завода-изготовителя выбираем УКРМ со ступенью регулирования ΔQКУ = 12,5квар.

Итак, в результате расчёта выбрали УКРМ с номинальной мощностью 250 квар и ступенью регулирования 12,5 квар (всего 20 ступеней).

Выводы

  1. При выборе УКРМ (конденсаторной батареи) расчёту подлежит не только её номинальная мощность, но и ступень регулирования.
  2. Выбор ступени регулирования рекомендуется выполнять для режима малых нагрузок.
  3. Расчёты с учётом потерь мощности в трансформаторе носят приблизительный характер и их рекомендуется проводить в две итерации; в некоторых случаях от второй итерации можно отказаться ввиду незначительной погрешности расчётов.
  4. Формулы расчёта и выбора номинальной мощности УКРМ:
Условие выбора номинальной мощности УКРМ

(36)

 
Условие выбора номинальной мощности УКРМ

(37)

где QКУ.ном – номинальная мощность устройства компенсации реактивной мощности (УКРМ);

Pр.нагр. – расчётная активная мощность на шинах НН трансформаторной подстанции;

tgϕр.нагр. – расчётный коэффициент реактивной мощности нагрузки;

tgϕmax (tgϕmin) – максимальное (минимальное) значение нормируемого коэффициента реактивной мощности на шинах ВН;

ΔPТ – потери активной мощности в трансформаторе;

ΔQТ – потери реактивной мощности в трансформаторе.

  1. Формула выбора ступени регулирования УКРМ:
Формула выбора ступени регулирования УКРМ

(38)

где ΔQКУ – мощность ступени регулирования устройства компенсации реактивной мощности (УКРМ);

Pнагр. – активная мощность на шинах НН трансформаторной подстанции (рекомендуется принимать значение для режима малых нагрузок).

Литература

  1. Приказ Министерства промышленности и энергетики РФ от 22 февраля 2007 г. № 49 «О порядке расчёта значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения)».

Обновление от 12 февраля 2018 г. (спасибо пользователю "Игорь" за комментарий)

Приказ № 49 от 22 февраля 2007 г. утратил силу с 07.08.2015 на основании приказа Минэнерго России от 23.06.2015 № 380:

Приказ Министерства энергетики РФ от 23 июня 2015 года № 380 «О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии».

Применительно к статье, в приказе № 380 убрали ограничение

"…в отношении потребителей электрической энергии, присоединенная мощность энергопринимающих устройств которых более 150 кВт…"

а также изменилась таблица

"Приложение. Максимальные значения коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети"

(в старой редакции "Предельные значения коэффициента реактивной мощности").


Эту статью можно обсудить ниже в комментариях или на форуме.

5 комментариев к записи “Компенсация реактивной мощности: расчет мощности и выбор ступени регулирования конденсаторной батареи”

  • Игорь:

    Новый -

    МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ от 23 июня 2015 года N 380

    О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии

     

  • Анатолий:

    Добрый день. А откуда эта методика расчета? Из какого учебника или справочника? Рассчет сделал, эксперт просит указать откуда такой расчет.

    • E.J.:

      Здравствуйте.

      В литературе я подобной методики не встречал. Если эксперт просит показать, откуда вы взяли формулы для расчёта, можете дать ссылку на эту статью.

  • Давроншоев Р:

    данный расчет очень помогает при решении компенсации реактивной мощности.

Оставить комментарий к записи Игорь

Войти